acetic acid
- Iupac Name:acetic acid
- CAS No.: 68475-71-8
- Molecular Weight:60.05196
- Modify Date.: 2022-10-27 19:54
- Introduction: Colorless liquid or crystals with a sour, vinegar-like odor. [Note: Pure compound is a solid below 62°F. Often used in an aqueous solution.]
View more+
1. Names and Identifiers
- 1.1 Name
- acetic acid
- 1.2 Synonyms
Acetic acid, propionic acid distillate Carboxylic acids, C2-3
- 1.3 CAS No.
- 68475-71-8
- 1.4 CID
- 176
- 1.5 Molecular Formula
- C2H4O2 (isomer)
- 1.6 Inchi
- InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
- 1.7 InChIkey
- QTBSBXVTEAMEQO-UHFFFAOYSA-N
- 1.8 Canonical Smiles
- CC(=O)O
- 1.9 Isomers Smiles
- CC(=O)O
2. Properties
- 2.1 Density
- 1.051 at 68 °F (USCG, 1999)
- 2.1 Melting point
- 16.6 deg C
- 2.1 Boiling point
- 117.9 deg C
- 2.1 Refractive index
- n25D 1.3696
- 2.1 Flash Point
- 104 °F (NTP, 1992)
- 2.2 Viscosity
- 1.056 mPa-s at 25 °C
- 2.3 VaporDensity
- 2.07 (NTP, 1992) (Relative to Air)
- 2.4 Atmospheric OH Rate Constant
- 7.40e-13 cm3/molecule*sec
- 2.5 Autoignition Temperature
- 961 °F (USCG, 1999)
- 2.6 Color/Form
- Clear, colorless liquid
Colorless liquid or crystals (Note: Pure compound is a solid below 62 degrees F). Often used in an aqueous solution).
- 2.7 Corrosivity
- Corrosive organic acid
- 2.8 Decomposition
- When heated to decomposition it emits irritating fumes.
- 2.9 Heat of Combustion
- 874.2 kJ/mol
- 2.10 Heat of Vaporization
- 23.36 at 25 °C; 23.70 kJ/mol at 117.9 °C;
- 2.11 HenrysLawConstant
- 1.00e-07 atm-m3/mole
- 2.12 Ionization Potential
- 10.66 eV
- 2.13 Odor
- Pungent
- 2.14 Odor Threshold
- Odor Threshold Range: 0.21 to 1.0 ppm
- 2.15 PH
- Aqueous solution 1.0 molar = 2.4; 0.1 molar = 2.9; 0.01 molar = 3.4
- 2.16 pKa
- [4.76]
- 2.17 Water Solubility
- Miscible with water, alcohol, glycerol, ether, carbon tetrachloride; practically insoluble in carbon disulfide
MISCIBLE WITH ACETONE, BENZENE; SOL IN ALCOHOL
- 2.18 Spectral Properties
- MAX ABSORPTION (ALCOHOL): 208 NM (LOG E= 1.5)
SADTLER REF NUMBER: 76 (IR, PRISM; V8 (NMR))
Index of refraction: 1.3720 @ deg C/D
IR: 4819 (Coblentz Society Spectral Collection)
UV: 4-3 (Organic Electronic Spectral Data, Phillips et al, John Wiley & Sons, New York)
RAMAN: 407 (Sadtler Research Laboratories Spectral Collection)
MASS: 34542 (NIST/EPA/MSDC Mass Spectral Database 1990 version)
1H NMR: 8 (Varian Associates NMR spectra collection)
13C NMR: 7 (Johnson and Jankowski, Carbon-13 NMR Spectra, John Wiley & Sons, New York)
Intense mass spectral peaks: 43 m/z, 60 m/z
- 2.19 Stability
- Stable under normal laboratory storage conditions.
- 2.20 Surface Tension
- 27.10 mN/m at 25 °C
3. Use and Manufacturing
- 3.1 Polymerization
- A drum contaminated with acetic acid was filled with acetaldehyde. The ensuing exothermic polymerization reaction caused a mild eruption lasting for several hours.
4. Safety and Handling
- 4.1 Exposure Standards and Regulations
- Acetic acid used as a general purpose food additive in animal drugs, feeds, and related products is generally recognized as safe when used in accordance with good manufacturing or feeding practice.
- 4.2 Octanol/Water Partition Coefficient
- log Kow = -0.17
- 4.3 Other Preventative Measures
- SRP: The scientific literature for the use of contact lenses in industry is conflicting. The benefit or detrimental effects of wearing contact lenses depend not only upon the substance, but also on factors including the form of the substance, characteristics and duration of the exposure, the uses of other eye protection equipment, and the hygiene of the lenses. However, there may be individual substances whose irritating or corrosive properties are such that the wearing of contact lenses would be harmful to the eye. In those specific cases, contact lenses should not be worn. In any event, the usual eye protection equipment should be worn even when contact lenses are in place.
SRP: Contaminated protective clothing should be segregated in such a manner so that there is no direct personal contact by personnel who handle, dispose, or clean the clothing. Quality assurance to ascertain the completeness of the cleaning procedures should be implemented before the decontaminated protective clothing is returned for reuse by the workers. Contaminated clothing should not be taken home at end of shift, but should remain at employee's place of work for cleaning.
Special precautions: Liquid acetic acid will attack some forms of plastics, rubber, and coatings.
Clothing contaminated with acetic acid should be placed in closed containers for storage until it can be discarded or until provision is made for the removal of acetic acid from the clothing. If the clothing is to be laundered or otherwise cleaned to remove the acetic acid, the person performing the operation should be informed of acetic acid's hazardous properties.
Employees who handle solid or liquid acetic acid or solutions containing acetic acid should wash their hands thoroughly before eating, smoking, or using toilet facilities.
Non-impervious clothing which becomes contaminated with solid or liquid acetic acid or solutions containing 50% or more of acetic acid by weight should be removed immediately and not reworn until the acetic acid is removed from the clothing. Non-impervious clothing which becomes contaminated with solutions containing less than 50% but greater than 10% of acetic acid by weight should be removed promptly ad not reworn until the acetic acid is removed from the clothing.
Where there is any possibility of exposure of an employees' body to solid or liquid acetic acid or solutions containing 50% or more of acetic acid by weight, facilities for quick drenching of the body should be provided within the immediate work area for emergency use.
The worker should immediately wash the skin when it becomes contaminated. />10%/
Work clothing that becomes wet should be immediately removed due to its flammability hazard. />10%/
Personnel protection: Avoid breathing vapors. Keep upwind. Avoid bodily contact with the material. ... Do not handle broken packages unless wearing appropriate personal protective equipment. Wash away any material which may have contacted the body with copious amounts of water or soap and water. If contact with the material anticipated, wear appropriate chemical protective clothing.
If material not on fire and not involved in fire: Deep sparks, flames, and other sources of ignition away. Keep material out of water sources and sewers. Build dikes to contain flow as necessary. Use water spray to knock-down vapors. Neutralize spilled material with crushed limestone, soda ash, or lime. - View all
- 4.4 Cleanup Methods
- Environmental considerations: Land spill: Dig a pit, pond, lagoon, or holding area to contain liquid or solid material. /SRP: If time permits, pits, ponds, lagoons, soak holes, or holding areas should be sealed with an impermeable flexible membrane liner./ Dike surface flow using soil, sand bags, foamed polyurethane, or foamed concrete. Absorb bulk liquid with fly ash or cement powder. Neutralize with caustic soda or soda ash.
Environmental considerations: Water spill: Add dilute caustic soda
Environmental considerations: Air spill: Apply water spray or mist to knock down vapors. Vapor knockdown water is corrosive or toxic and should be diked for containment.
Collect leaking liquid in sealable containers. Cautiously neutralize spilled liquid with sodium carbonate only under the responsibility of an expert. Wash away remainder with plenty of water (extra personal protection: chemical protection suit including self-contained breathing apparatus).
Remove all ignition sources, ventilate area of spill or leak. If in liquid form, for small quantities, absorb on paper towels ... large quantities can be collected & atomized in suitable combustion chamber, or diluted ... neutralized & flushed into a sewer. If in the solid form, collect in the most safe & convenient manner for reclamation or allow to melt & collect as above.
Use water spray to cool and disperse vapors, protect personnel, and dilute spills to form nonflammable mixtures. Use soda ash to neutralize spills. Control runoff and isolate discharged material for proper. disposal. - View all
- 4.5 DisposalMethods
- SRP: The most favorable course of action is to use an alternative chemical product with less inherent propensity for occupational exposure or environmental contamination. Recycle any unused portion of the material for its approved use or return it to the manufacturer or supplier. Ultimate disposal of the chemical must consider: the material's impact on air quality; potential migration in soil or water; effects on animal, aquatic, and plant life; and conformance with environmental and public health regulations.
Excess acetic acid and waste material containing this substance should be placed in a covered metal container, clearly labeled, and handled according to your institution's waste disposal guidelines.
The following wastewater treatment technologies have been investigated for acetic acid: Activated carbon.
The following wastewater treatment technologies have been investigated for acetic acid: Reverse osmosis.
- 4.6 DOT Emergency Guidelines
- /GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Fire or Explosion: Flammable/combustible materials. May be ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Those substances designated with a "P" may polymerize explosively when heated or involved in a fire. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Health: May cause toxic effects if inhaled or ingested/swallowed. Contact with substance may cause severe burns to skin and eyes. Fire will produce irritating, corrosive and/or toxic gases. Vapors may cause dizziness or suffocation. Runoff from fire control or dilution water may cause pollution. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Public Safety: CALL Emergency Response Telephone Number ... . As an immediate precautionary measure, isolate spill or leak area for at least 50 meters (150 feet) in all directions. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate closed spaces before entering. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Protective Clothing: Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing is recommended for fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Evacuation: ... Fire: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Fire: Some of these materials may react violently with water. Small fires: Dry chemical, CO2, water spray or alcohol-resistant foam. Large fires: Water spray, fog or alcohol-resistant foam. Move containers from fire area if you can do it without risk. Dike fire control water for later disposal; do not scatter the material. Do not get water inside containers. Fire involving tanks or car/trailer loads: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. For massive fire, use unmanned hose holders or monitor nozzles; if this is impossible, withdraw from area and let fire burn. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ Spill or Leak: Fully encapsulating, vapor protective clothing should be worn for spills and leaks with no fire. ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. A vapor suppressing foam may be used to reduce vapors. Absorb with earth, sand or other non-combustible material and transfer to containers ... . Use clean non-sparking tools to collect absorbed material. Large spills: Dike far ahead of liquid spill for later disposal. Water spray may reduce vapor; but may not prevent ignition in closed spaces. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 132: FLAMMABLE LIQUIDS - CORROSIVE/ First Aid: Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. In case of burns, immediately cool affected skin for as long as possible with cold water. Do not remove clothing if adhering to skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. /Acetic acid, glacial; Acetic acid, solution, more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Health: TOXIC; inhalation, ingestion, or skin contact with material may cause severe injury or death. Contact with molten substance may cause severe burns to skin and eyes. Avoid any skin contact. Effects of contact or inhalation may be delayed. Fire may produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Fire or Explosion: Combustible material: may burn but does not ignite readily. When heated, vapors may form explosive mixtures with air: indoors, outdoors, and sewers explosion hazards. Those substances designated with a "P" may polymerize explosively when heated or involved in a fire. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated. Runoff may pollute waterways. Substance may be transported in a molten form. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Public Safety: CALL Emergency Response Telephone Number ... . As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids. Keep unauthorized personnel away. Stay upwind. Keep out of low areas. Ventilate enclosed areas. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Protective Clothing: Wear positive pressure self-contained breathing apparatus (SCBA). Wear chemical protective clothing that is specifically recommended by the manufacturer. It may provide little or no thermal protection. Structural firefighters' protective clothing provides limited protection in fire situations ONLY; it is not effective in spill situations where direct contact with the substance is possible. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Evacuation: ... Fire: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Fire: Small fires: Dry chemical, CO2 or water spray. Large fires: Dry chemical, CO2, alcohol-resistant foam or water spray. Move containers from fire area if you can do it without risk. Dike fire control water for later disposal; do not scatter the material. Fire involving tanks or car/trailer loads: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ Spill or Leak: ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS. /Acetic acid, solution, more than 10% but not more than 80% acid/
/GUIDE 153: SUBSTANCES - TOXIC AND/OR CORROSIVE (COMBUSTIBLE)/ First Aid: Move victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. /Acetic acid, solution, more than 10% but not more than 80% acid/ - View all
- 4.7 Fire Fighting Procedures
- Use water spray, dry chemical, "alcohol" foam, or carbon dioxide. Use water to keep fire-exposed containers cool.
/When fighting fire/ use self-contained breathing apparatus with a full facepiece operated in pressure-demand or other positive pressure mode.
If material on fire or involved in fire: Use water in flooding quantities as fog. Solid streams of water may be ineffective. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible. Use "alcohol" foam, dry chemical or carbon dioxide. Use water spray to knock-down vapors.
Extinguish fire using agent suitable for type of surrounding fire. Material itself does not burn or burns with difficulty. Apply water from as far a distance as possible. Keep run-off water out of sewers and water sources. /Corrosive liquid/
- 4.8 FirePotential
- Moderate, when exposed to heat or flame ...
- 4.9 Formulations/Preparations
- GRADES: USP /United States Pharmacopeia/ (glacial, 99.4 wt % and dilute, 36-37 wt %), cp /chemically pure: a grade designation signifying a minimum of impurities, but not 100% purity/; technical (80; 99.5%); commercial (6, 28, 30, 36, 56, 70, 80 & 99.5%); nf /national formulary/ (diluted; 6.0 g/100 ml).
Reagent grade (glacial)-99.7%, USP grade glacial-99.5%; aq acetic acid-28,36,56,70,80,85 and 90%; lab reagent (aq)-36%
Household vinegar is usually 5% acetic acid
- 4.10 RTECS
- AF1225000
- 4.10 Protective Equipment and Clothing
- Persons working with pure acid or concentrated solution should wear protective clothing, eye and face, ...hand and arm protection, and respiratory equipment.
500 ppm: Chemical cartridge respirator with an organic vapor cartridge(s) with a full facepiece or gas mask with an organic vapor canister (chin-style or front- or back-mounted canister) or supplied-air respirator with a full facepiece, helmet, or hood, or self-contained breathing apparatus with a full facepiece. 1000 ppm: Type C supplied-air respirator with a full facepiece operated in pressure-demand or other positive pressure mode or with a full facepiece, helmet, or hood operated in continuous-flow mode. Escape: Gas mask with an organic vapor canister (chin-style or front- or back-mounted canister) self-contained breathing apparatus.
Breakthrough times of greater than one hour were reported by (normally) two or more testers for neoprene, nitrile rubber, polyethylene, polyvinyl chloride, natural rubber and Vitron.
Employees should be provided with and required to use impervious clothing, gloves, face shields (eight-inch minimum), and other appropriate protective clothing necessary to prevent any possibility of skin contact with solid or liquid acetic acid or solutions containing 50% or more of acetic acid by weight and to prevent repeated or prolonged skin contact with solutions containing 10% or more but less than 50% of acetic acid by weight.
Employees should be provided with and required to use dust- and splash-proof safety goggles where there is any possibility of solid or liquid acetic acid or solutions containing acetic acid contacting the eyes.
Wear appropriate personal protective clothing to prevent skin contact. />10%/
Wear appropriate eye protection to prevent eye contact.
Eyewash fountains should be provided in areas where there is any possbility that workers could be exposed to the substance; this is irrespective of the recommendation involving the wearing of eye protection. />5%/
Facilities for quickly drenching the body should be provided within the immediate work area for emergency use where there is a possibility of exposure. [Note: It is intended that these facilities provide a sufficient quantity or flow of water to quickly remove the substance from any body areas likely to be exposed. The actual determination of what constitutes an adequate quick drench facility depends on the specific circumstances. In certain instances, a deluge shower should be readily available, whereas in others, the availability of water from a sink or hose could be considered adequate.] />50%/
Respirator Recommendations: Up to 50 ppm: (Assigned protection factor = 25) Any supplied-air respirator operated in a continuous-flow mode. Substance causes eye irritation or damage; eye protection needed./(Assigned protection factor = 25) Any powered, air-purifying respirator with organic vapor cartridge(s). Substance causes eye irritation or damage; eye protection needed./(Assigned protection factor = 50) Any chemical cartridge respirator with a full facepiece and organic vapor cartridge(s)/(Assigned protection factor = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister/(Assigned protection factor = 50) Any self-contained breathing apparatus with a full facepiece/(Assigned protection factor = 50) Any supplied-air respirator with a full facepiece.
Respirator Recommendations: Emergency or planned entry into unknown concentrations or IDLH conditions: (Assigned protection factor = 10,000) Any self-contained breathing apparatus that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode/(Assigned protection factor = 10,000) Any supplied-air respirator that has a full facepiece and is operated in a pressure-demand or other positive-pressure mode in combination with an auxiliary self-contained positive-pressure breathing apparatus.
Respirator Recommendations: Escape: (Assigned protection factor = 50) Any air-purifying, full-facepiece respirator (gas mask) with a chin-style, front- or back-mounted organic vapor canister/Any appropriate escape-type, self-contained breathing apparatus. - View all
- 4.11 Reactivities and Incompatibilities
- Incompatibilities: carbonates, hydroxides, many oxides, and phosphates ... .
Cooling is necessary to prevent possible explosion from contact of potassium permanganate (or the calcium or sodium salts) with acetic acid
Liquid acetic acid will attack some forms of plastics, rubber, and coatings.
An explosion occurred during initial heating up of a large volume of glacial acetic acid being treated with chromium trioxide. This was attributed to violent interaction of solid chromium trioxide and liquid acetic acid on a hot, exposed steam coil, and subsequent initiation of an explosive mixture of acetic acid vapor and air. The risk has been obviated by using a solution of dichromate in sulfuric acid as oxidant, in place of chromium trioxide. The sulfuric acid is essential, as the solid dichromate moist with acetic acid, obtained by evaporating an acetic acid solution to near-dryness, will explode.
Potassium hydroxide residue in a catalyst pot reacted violently when acetic acid was added.
Mixing acetic acid and 2-aminoethanol in a closed container caused the temperature and pressure to increase.
Mixing glacial acetic acid and chlorosulfonic acid in a closed container caused the temperature and pressure to increase.
During the preparation of beta-hydroxy-beta-methyl glutaric acid using 75 g of diallyl methyl carbinol, the material had been ozonized and allowed to stand overnight. Glacial acetic acid had been added and the mixture was being concentrated under vacuum in a desiccator. After 1 1/2 hours the mixture exploded. Previous preparations using 12.6 g were successful.
Mixing acetic acid and ethylene diamine in a closed container caused the temperature and pressure to increase.
Mixing glacial acetic acid and ethyleneimine in a closed container caused the temperature and pressure to increase.
A mixture of ammonium nitrate and acetic acid ignites when warmed, especially if concentrated.
In reactions between bromine pentafluoride and acetic acid ... fire and explosions are likely.
The reaction between chlorine trifluoride and acetic acid is very violent, sometimes explosive.
Acetic anhydride was gradually being titrated into a mixture of chromic anhydride and acetic acid in a 20-gallon, glass-lined tank. After 1 1/2 hours of this procedure, the contents of the reactor exploded.
Mixing glacial acetic acid and oleum in a closed container caused the temperature and pressure to increase.
Explosions involving these materials /perchloric acid and acetic acid/ have occurred in electrolytic polishing baths. The violence in some cases approached that of a true high explosive.
Phosphorus isocyanate and ... acetic acid ... react violently.
Several laboratory explosions have occurred using this reaction /phosphorus trichloride and acetic acid/ to form acetyl chloride. Poor heat control probably caused formation of phosphine.
Ignition occurs when potassium t-butoxide reacts with ... acetic acid.
During the production of terephthalic acid, n-xylene is oxidized in the presence of acetic acid. During these processes, detonating mixtures may be produced. Addition of a small amount of water may largely eliminate the risk of explosion.
Mixing sodium hydroxide and glacial acetic acid in a closed container caused the temperature and pressure to increase.
Mixtures of ... /acetic acid, acetic anhydride & perchloric acid/ have varying degrees of sensitivity to shock. Vapors above the heated mixtures are flammable.
Erroneous addition of aqueous acetic acid into a tank of acetic anhydride caused a violent exothermic hydrolysis.
Strong oxidizers (especially chromic acid, sodium peroxide & nitric acid), strong caustics [Note: Corrosive to metals]. - View all
- 4.12 Skin, Eye, and Respiratory Irritations
- ... Severe burns to eyes and skin may occur. Vapors strongly irritating to eyes and respiratory tract.
The vapor of acetic acid is irritating to the eyes and nose, causing lacrimation and hyperemia.
Irritating concn: 25 mg/cu m.
... Eye irritation has been noted at a concentration below 10 ppm.
- 4.13 Specification
-
The IUPAC name of Carboxylic acids, C2-3 is acetic acid. With the CAS registry number 68475-71-8, it is also named as Acetic acid, propionic acid distillate. The classification code is TSCA UVCB. In addition, the formula is C2H4O2 and molecular weight is 60.06.
The other characteristics of Carboxylic acids, C2-3 can be summarized as: (1)# of Rule of 5 Violations: 0; (2)ACD/BCF (pH 5.5): 1; (3)ACD/BCF (pH 7.4): 1; (4)ACD/KOC (pH 5.5): 2.61; (5)ACD/KOC (pH 7.4): 1; (6)#H bond acceptors: 2; (7)#H bond donors: 1; (8)#Freely Rotating Bonds: 0 ; (9)Index of Refraction: 1.376; (10)Molar Refractivity: 12.879 cm3; (11)Molar Volume: 56.175 cm3; (12)Polarizability: 5.106×10-24 cm3; (13)Surface Tension: 31.917 dyne/cm ; (14)Flash Point: 40 °C; (15)Enthalpy of Vaporization: 23.7 kJ/mol; (16)Boiling Point: 117.065 °C at 760 mmHg; (17)Vapour Pressure: 13.874 mmHg at 25°C; (18)Exact Mass: 60.021129; (19)MonoIsotopic Mass: 60.021129; (20)Topological Polar Surface Area: 37.3; (21)Heavy Atom Count: 4; (22)Complexity: 31.
People can use the following data to convert to the molecule structure.
1. SMILES:CC(=O)O
2. InChI:InChI=1/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
3. InChIKey:QTBSBXVTEAMEQO-UHFFFAOYAR
4. Std. InChI:InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)
5. Std. InChIKey:QTBSBXVTEAMEQO-UHFFFAOYSA-N
- View all
5. Computational chemical data
- Molecular Weight: 60.05196g/mol
- Molecular Formula: C2H4O2
- Compound Is Canonicalized: True
- XLogP3-AA: -0.2
- Exact Mass: 60.021129366
- Monoisotopic Mass: 60.021129366
- Complexity: 31
- Rotatable Bond Count: 0
- Hydrogen Bond Donor Count: 1
- Hydrogen Bond Acceptor Count: 2
- Topological Polar Surface Area: 37.3
- Heavy Atom Count: 4
- Defined Atom Stereocenter Count: 0
- Undefined Atom Stereocenter Count: 0
- Defined Bond Stereocenter Count: 0
- Undefined Bond Stereocenter Count: 0
- Isotope Atom Count: 0
- Covalently-Bonded Unit Count: 1
- CACTVS Substructure Key Fingerprint: AAADcYBAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgAACAAAAACAgAACCAAAAgAIAACQCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==
6. Recommended Suppliers
-
- Products:Medical Intermediate,Lithium Battery Additive,Organicetc Chemical, Organic Chemical, Paint Chemical and Detergent Chemical etc..
- Tel:0086-0371-55170693
- Email:info@tianfuchem.com
acetic acid
- Purity:99%Packing: 200kg/bag FOB
- Price: 100 USD/kilogram
- Time: 2024/11/15
Inquire
-
- Products:CBD,443998-65-0,16648-44-5,BMK,PMK
- Tel:86-191-31911055
-
- Products:chemical raw materials, paint chemicals, plastic additives, leather chemical industry
Titanium dioxide, Chlorinated polyethylene, Stabilizer, Chlorinated paraffin
- Tel:86-731-84627146
-
-
7. Realated Product Infomation